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High-power, long-life Hall thrusters are neededN#&SA's
human exploration missions.

Motivation

— At high power levels (>300 kW) solar electric prégpaon could significantly reduce the number

of heavy lift launch vehicles required for a hunmaission to a near earth asteroid (2010 N/
HEFT study)

High-power Hall thrusters could enable a varietpibdted and cargo missions for NASA in
support of human exploration

— Large amounts of power in space are becoming istrgly available

NASA's Advanced In-Space Propulsion (AISP) Projedasked with the
development of high-power EP systems for humanogapbn missions

— AISP project supports the Enabling Technology Depeglent and Demonstration (ETDD)
Program

ETDD established by NASA in 2010 to increase theabdities and reduce the cost of
exploration activities
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« Hall thrusters produce a high-energy ion beam using crossed electric (E)
and applied magnetic (B) fields.

— ExB motion of electrons dominates drift alone E,

— non-magnetized ions free to accelerate axially to high energy by component
of E L to B according to Ohm’s law.
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e Some ions in the beam strike the
channel walls with high energy
and erode the acceleration
channel.
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JPL Erosion physics in Hall thrusters involve plasma-material

JeH—’ Lb ty

e e s ecmeeey INTEFACTIONS @t Multiple scales.

Erosion rate: €= JLY
Incident ion current density: J, = JL(I’li ,A(I)p)

Material sputtering yield: Y = Y(KIO + KS, 6)
Incident ion kinetic energy gained by acceleratiothe plasma: Kp = Kp(A(])p)

Incident ion kinetic energy gained by acceleratiothe sheath: KS = KS(A(I)S), A(I)S - A(I)S(Te)

Anode———————— Hollow cathode
Thruster channel (dielectric) wall
Propellant secondary; ; (I)
electron® o O sheath A S
primary pre-sheath A
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<JPL  Background and Motivation (1) @
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1960s-90sPropulsive performance drives early developméhtadl thrusters.
Channel erosion recognized as a potentially ctilicatation.

— “...at the beginning of the 1960s magnetic-force-digeipotentialization became known,
and the chosen geometry of force lines (convexrtbtix@ anode) provided repulsion of ions
from the walls by the electric field, thus reducthg channel erosioh

[A. . Morozov and V. V. SavelyeWReviews of Plasma Physjél, 203 (2000)].
— More than 50 SPT-70s fly in near-earth orbit.

1990+mid 2000: Significant improvements in performance and dibhievec
through decades of research.
— Flight of Hall thrusters for near-earth missionsittaues.

— Channel erosion not eliminated or reduced suffityeto retire the risk for deep-space
science missionddall thrusters never flown onboard NASA spacecratft.

2005-2010A life test of Aerojet’s BPT-4000 is extended>tb0,000 h [K. de
Grys, A. Mathers, B. Welander, V. Khayms, AIAA-ZDB6698].

— For at least the first few thousand hours erosicdh@channel insulators occurred typically
but then diminished, reaching a near-steady sfede-€b5,600 h.

— Implications immense for NASA missions but detaipddy/sics that led to this result unclear.
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<JPL  Background and Motivation (I1)
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o 2008-2009New Hall thruster code dubbed
“Hall2De” developed to investigate plasma & Hall2De simulations of the BPT-4000
erosion physics within complicated magnetic fie
topologies.

o 2009-2010Hall2De numerical simulations
— provide explanations of the BPT-4000 test result

— propose a technique dubbed “magnetic shielding
to reduce erosion in Hall thrusters by several &
of magnitude.

« 2010-presentModifications and testing of an existing laboratory Hall thrustgimbat
JPL as part of a proof-of-principle effort to
— validate understanding of magnetic shielding plsysic

— demonstrate ability to design Hall thrusters witheast order-of-magnitude increase in life
over the SOA.



Hall2De is a physics-based plasma and erosion solver that began development at JPL
in 2008 to assess the life capability of existing Hall thrusters and to guide the design
of new long-life thrusters for NASA science missions.

Discretization of all conservation laws on a magnetic field-aligned mesh

Two components of the electron current density field accounted for in Ohm’s law
No statistical noise in the numerical solution of the heavy-species conservation laws
Multiple ion populations allowed

Large computational domain, extending several times the thruster channel length
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o Physics-based Modeling & Simulation (M&S) Capabilities at JPL Support
¥ a Wide Range of NASA Electric Propulsion Technologies

THE MISSION OF THE M&S PROGRAM AT JPL HAS BOTH

A NEAR-TERM AND A LONG-TERM IMPACT FOR EP: . _ JPLs OrSa2D for - _ T;;;;?

To Understand Gritical Physics e M&S of EP hollow cathodes™~x
that cannot be resolved or accessed by conventional
diagnostics, leading to better-performing, longer-life engines
— example: erosion inionengine grid apertures
— example: erosion of the hollow cathode orifice

To Discover or Identify Unknown Physics

that may lead to breakthrough capabilities, enabling new
science missions for NASA
— example: “‘magnetic shielding” in Hall-effect thrusters

To Guide Designs

of new engines (or refine past designs), reducing costly “trial- AFRL’s MACH 2D & 3D resistive-Hall MHD codes
and-error’ tests ; for M&S of a variety of pulsed and steady-state
— example: NEXIS ion optics electromagnetic thrusters

To Diminish Risk ~ E
- both real and perceived - by elucidating test and/or flight

observations that are not well understood and publishing AT |
findings in peer-reviewed journals (I _ v saramen s

CURRENT DISTRIBUTION IN A

To Reduce Qualification Gosts s S :'ZZ 'II._:Z RECTANGULAR PFT
by verifying performance and/or life capability that is [ JPL’s Hall2De & MIT/AERL’s HPHall :jjj i[

otherwise too costly to demonstrate by qualification tests )«
To Sherten Time To Flight >
by reducing time to qualify N R =aran o s g bt

for M&S of Hall-effect thrusters

geoametry llustrates "Magnetic
Shiskling, " a breakihrough

JPL’s CEX 2D & 3D SN Har—
for M&S of ion 17~ -/
engine optics } s R Wi omior s Strong university partnerships
; g strengthen and expand our in-
house M&S capabilities.

= UCI, Caltech: fundamental processes in
colloid microthrusters

= ASU: MHD processesin
electromagnetic propulsion and high-
performance computing

= UCLA: fundamental plasma physicsin
ion engine discharge chambers

Copyright 2010, A Fights resanved.




Jpl_ A proof-of-principle effort began at JPL in 2009 to demonstrate
et propulsin Leborzoy ., MAgGNetic shielding can “eliminate” channel erosion in Hall thrust

o 2-yrresearch and technology development (R&TD) program
funded by JPL
— Principal Investigator: Mikellides, I.
— Co-Investigators: Katz, I., Hofer, R. and Goebel, D

* Neither theory nor experiment alone can validate fully the first
principles of magnetic shielding. The objective of t-yr effort
was therefore twofold:

— to demonstrate in the laboratory that erosion rates can be
reduced by >2 orders of magnitude and,

— to demonstrate understanding of the theory that enables such
reductions in the erosion rates.
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Jpl_ The “Equipotentialization” and “Isothermalizatioaf the lines M@
e reeisen Lozt ey OF fOrce are well-known features of Hall thrusters. |

Q 2 . V||pe
Z>>1 VT,~0 o V80
T.(y)~ const o(y)-T.(w)¢n[n_(y)] = const (the" Thermalize potential)
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JPL  Magnetic Shielding First Principle:
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 What does it doft achieves adjacent to channel surfaces:

— highplasma potential
— low electron temperature
How does it do it? exploits magnetic field lines that extend desfo ithe

acceleration channel, which marginalizes the efiédixIn(n,).
Why does it work? reduces significantly ALL contributions to eroat ion kinetic

energy, sheath energy and particle flux.

Magnetic materi
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Direct measurements provide strong evidence tt £&

the lines of force are indeed isothermal.
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Jpl_ Comparisons of Plasma Properties Along the Channel Centerl|
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Ayt ST - Plasma Potential & Electron Temperature -

« Plasma measurements foand T, guide non-classical collision frequency in both
configurations.

» Distance betweef & T, maxima in the two configurations approximately equal to the
distance between magnetic field maxima at the centerline.

» Discrepancies in the near-plume of the MS configuration of lijleifecance to wall

erosion.
45 Channel ex— us 45C 45 uy MS 45C
T 400 40 il 400
L 0 erline ) ilolt Centerline B
% 3 | | Experiment (T) 350 T % 3 fq "\ ®  Experiment ([) 390 o
= 30— r—ﬁ“\;' [ e ——— Theory (T) —300 & § 30 \ J"'“‘ ------ Theory (T - 300 g
8 g5 ] Experimentd) || 250 5 & 25 plig | " Eeimentd) | og, 2
S | | I Theory ) = g ﬂ Tl s
€20 Y =200 & & 20 HE S 200 &
= ' ] \“ ;r
8 15 % , 150 § £ 15 t e 150 &
O 1} . — [ T TTmeeeal —_
,_,;'j L S e S { e e 100 ’,_,ij 10 {J,: \\; 1 100~
R T 7 L N CORCE S 33 50
il % % | | B — Channel exit——» 5
0 T T 0 0 I ' 0
02 04 06 08 1 12 14 16 18 2 02 04 06 08 1 12 14 16 18 2
z/L, z/L.

14



JPL

Jet Propulsion Laboratory

Comparisons of Plasma Properties Along the Chanad#é
- Plasma Potential -

California Institute of Technology
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Comparisons of Plasma Properties Along the Chamaéls
- Plasma Potential at the Inner Wall-

California Institute of Technology
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Comparisons of Plasma Properties Along the Chamaéls
- Electron Temperature -
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Comparisons of Plasma Properties Along the Chamaéls
- Electron Temperature in the US Configuration-
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Comparisons of Plasma Properties Along the Chamaéls
- Electron Temperature in the MS Configuration -
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JPL Kinetic energy gained by ions in the plasma dominates contribut
=Vl %=  toerosion over sheath energyDifferences between measured &
cetema e atieceeey- gimulated Tof no major significance to erosion.
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JRPL Comparisons of Erosion Rates Along the ChanneldVall
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Comparisons of Erosion Rates Along the Channel3A
- US & MS Configurations -

JPL
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JPL Summary of Comparisons on
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JRPL Magnetically Shielding Reduces Erosion by Orders of
e ey ey Magnitude Without Degrading Thruster Performance.

Modeling & simulations Thruster testing performed Plasma and erosion diagnostics confirm MS
guide MS thruster design to validate MS with only small changes in performance
A A A
[ \ \

e Thrust: 401 mN
 Specific Impulse: 1950 s
« Efficiency: 63.5%

Original or
baseline (HEBL)
configuration

HBEBL testing

Magnetically |
shielded (HEMS) |
configuration

e Thrust: 385 mN
 Specific Impulse: 2000 s
« Efficiency: 62.6%

HG6MS simulation

| HEMS testing
probe mesurements N
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5t Summary Remarks &
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* Collectively, the comparisons between simulations and
measurements provide strong evidence that the first principles of
magnetic shielding are now well understood and can be applied to
reduce erosion in Hall thrusters by at least 2 orders of magnitude.

* Uncertainties and discrepancies exposed by the comparisons do n
appear to alter the effectiveness of magnetic shie

« These findings have significant and immediate implications on
science missions. The elimination of wall erosion in Hall thruster
solves a problem that has remained unsettled for several decades,
allowing for new space exploration missions that could not be
undertaken in the past.
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